воскресенье, 23 мая 2010 г.

Достоинства и недостатки

Достоинства


  • Язык ассемблера позволяет писать самый быстрый и компактный код, как минимум не хуже, чем генерируемый трансляторами языков более высокого уровня; всё зависит от способностей программиста.
  • Если код программы достаточно большой, данные, которыми он оперирует, не помещаются целиком в регистрах процессора, т. е. частично или полностью находятся в оперативной памяти, то искусный программист, как правило, способен значительно оптимизировать программу по сравнению с высокоуровневыми трансляторами по одному или нескольким параметрам: скорость работы (за счёт оптимизации вычислений и/или более рационального обращения к ОП, перераспределения данных), объём кода (в том числе за счёт эффективного использования промежуточных результатов).
  • Обеспечение максимального использования специфических возможностей конкретной платформы, что также позволяет создавать более эффективные программы с меньшими затратами ресурсов.
  • При программировании на языке ассемблера возможен непосредственный доступ к аппаратуре, в том числе портам ввода-вывода, регистрам процессора и др.
  • Язык ассемблера применяется для создания драйверов оборудования и ядра операционной системы.
  • Язык ассемблера используется для создания «прошивок» BIOS.
  • С помощью языка ассемблера создаются компиляторы и интерпретаторы языков высокого уровня, а также реализуется совместимость платформ.
  • Существует возможность исследования других программ с отсутствующим исходным кодом с помощью дизассемблера.

Недостатки

  • Главное преимущество языка ассемблера почти незаметно благодаря хорошей оптимизации в современных компиляторах языков высокого уровня и полностью нивелируется хорошей оптимизацией современных аппаратных платформ с кэшированием шины процессора.[источник не указан 300 дней]
  • В силу машинной ориентации («низкого» уровня) языка ассемблера человеку сложнее читать и понимать программу на языке ассемблера по сравнению с языками программирования высокого уровня; программа состоит из слишком «мелких» элементов — машинных команд, соответственно усложняются программирование и отладка, растёт трудоёмкость, велика вероятность внесения ошибок. В значительной степени возрастает сложность совместной разработки.
  • Как правило, меньшее количество доступных библиотек по сравнению с современными индустриальными языками программирования.
  • Отсутствует переносимость программ на компьютеры с другой архитектурой и системой команд (кроме двоично-совместимых)

Применение

Исторически можно рассматривать язык ассемблера как второе поколение языков программирования ЭВМ (если первым считать машинный код). Недостатки языка ассемблера, сложность разработки на нём больших программных комплексов привели к появлению языков третьего поколения — языков программирования высокого уровня (Фортран, Лисп, Кобол, Паскаль, Си и др.). Именно языки программирования высокого уровня и их наследники в основном используются в настоящее время в индустрии информационных технологий. Однако языки ассемблера сохраняют свою нишу, обусловливаемую их уникальными преимуществами в части эффективности и возможности полного использования специфических средств конкретной платформы.

На языке ассемблера пишутся программы или фрагменты программ, для которых критически важны:

  • быстродействие (драйверы, игры);
  • объем используемой памяти (загрузочные секторы, встраиваемое (англ. embedded) программное обеспечение, программы для микроконтроллеров и процессоров с ограниченными ресурсами, вирусы, программные защиты).

С использованием программирования на языке ассемблера производятся:

  • Оптимизация критичных к скорости участков программ, написанных на языке высокого уровня, таком как C++. Это особенно актуально для игровых приставок, имеющих фиксированную производительность, и для мультимедийных кодеков, которые стремятся делать менее ресурсоёмкими и более популярными.
  • Создание операционных систем (ОС). ОС часто пишут на Си, языке, который специально был создан для написания одной из первых версий UNIX. Аппаратно зависимые участки кода, такие как загрузчик ОС, уровень абстрагирования от аппаратного обеспечения (hardware abstraction layer) и ядро, часто пишутся на языке ассемблера. Ассемблерного кода в ядрах Windows или Linux совсем немного, поскольку авторы стремятся к переносимости и надёжности, но, тем не менее, он присутствует. Некоторые любительские ОС, такие как MenuetOS, целиком написаны на языке ассемблера. При этом MenuetOS помещается на дискету и содержит графический многооконный интерфейс.
  • Программирование микроконтроллеров (МК) и других встраиваемых процессоров. По мнению профессора Таненбаума, развитие МК повторяет историческое развитие компьютеров новейшего времени.[1] На сегодняшний день для программирования МК весьма часто применяют язык ассемблера. В МК приходится перемещать отдельные байты и биты между различными ячейками памяти. Программирование МК весьма важно, так как, по мнению Таненбаума, в автомобиле и квартире современного цивилизованного человека в среднем содержится 50 микроконтроллеров.[2]
  • Создание драйверов. Некоторые участки драйверов, взаимодействующие с аппаратным обеспечением, программируют на языке ассемблера. Хотя в целом в настоящее время драйверы стараются писать на языках высокого уровня в связи с повышенными требованиями к надёжности. Надёжность для драйверов играет особую роль, поскольку в Windows NT и Linux драйверы работают в режиме ядра. Одна ошибка может привести к краху системы.
  • Создание антивирусов и других защитных программ.
  • Написание трансляторов языков программирования.